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Chiral racemicansazirconocene complexes can be activated

Figure 1. Molecular structure of ZIPhN(CH,)sNPH Clx(THF), (1). Bond
distances (R): ZrCl(1) 2.4785(5), ZrCl(2) 2.4565(5), ZrO(1)
2.321(1), Zr-0O(2) 2.302(2). Bond angles (deg): Cl{iZr—CI(2)

by MAO or other cocatalysts to generate excellent catalysts for 164.00(2), O(1)Zr—0(2) 79.32(5). Torsion angles (deg): NfZr—

isotactico-olefin polymerization and other stereoselective reac-
tions! Racemic SiMegbridged bis(indenyl) zirconocenes that con-

tain methyl and aryl substituents at the indenyl 2 and 4 positions,
respectively, are among the best metallocene catalysts for the pro-

duction of high molecular weight, isotactic palyplefins)? ansa

Zirconocenes are normally synthesized by salt-elimination reac-

tions betweemmnsabis(indenyl) dianion reagents and Zr¥r Zr-

N(2)—C(10) —133.8(2), N(2)-Zr—N(1)—C(4) —127.8(2).
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X4, compounds. However, the factors that control chemoselec- T O e o
tivity (i.e. metallocene vs dinuclear products) and diastereose- Z
lectivity (i.e.rac/mescselectivity) in these reactions are not well ol

understood, and extensive screening studies of reagents, counter- THE

ions, solvents, use of added ligands, and reaction conditions are ,°'2r \\\\\ ™

required for each case to optimize yiefdAdmine elimination Ph/N/\DN’

reactions ofansabis(indenes) and Zr(Nf% compounds provide , © R® R® R° sBI
efficient routes to simplensazirconocenes, but this approach ; :{Ae ﬂ E 328,
is not successful for sterically crowded ca$étere we report a '2LiC'lU2[SB"1(E‘z°) ¢ Me benzo MBSBI
general, high-yield synthesis odc-SiMey-bridged bis(indenyl) 2ad d Me Ph H MPSBI

zirconocenes that exploits the conformational properties of a

simple chelating diamide ligand to control diastereoselectivity.
The chelated propyleradiamide complex ZiPhN(CH,)sNPH; -
Cly(THF), (1) can be prepared by two methods as shown in
Scheme 1. The reaction of ZrGind 2 equiv of Li{PhN(CH,)s-
NPh] in toluene affords ZIPhN(CH,)sNPH; as a yellow solid
in 73% isolated yield. The reaction of ZrGind Z{ PhN(CH)s-
NPh}, in THF/ELO (1:1 by volume) yielddl as a yellow solid
quantitatively? Alternatively, 1 can be prepared directly by the
reaction of ZrC} with 1 equiv of Lp[PhN(CH,)sNPh] in THF/
Et,O in 81% isolated yield.
A view of the molecular structure df which highlights the
conformation of the chelate ring is shown Figuré Compound
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1 is monomeric and has approximale symmetry with theC,

axis lying along the Zr- - -C(2) vector and bisecting the G(1)
Zr—0(2) angle. The geometry at Zr is distorted octahedral and
the weak donor THF ligands are trans to the strong donor amide
groups. The Z+N bond distances (2.082(2), 2.080(2) A) are
normal and the N(1yZr—N(2) angle (91.63(6) is close to the
ideal octahedral value. The six-membered E(4§1)—Zr—N(2)—
C(3)—C(2) chelate ring adopts a twist conformatiomhe N(1),

Zr, N(2), and C(2) atoms are coplanar to within 0.02 A, and C(1)
and C(3) lie 0.79 A above and below the N(Br—N(2)—C(2)
plane, respectively. This conformation places the two phenyl rings
on opposite sides of the N(@Zr—N(2)—C(2) plane; the C(4)
N(1)- -N(2)—-C(10) torsion angle is 1452 However, thelH
NMR spectrum ofl contains two methylene resonances for the
diamide ligand in a 2:1 intensity ratio down t6105 °C (THF-

dg), which implies that ring inversion is fast on the NMR scale
in solution.
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Figure 2. Molecular structure ofac-(MBSBI)Zr{ PhN(CH)sNPH (3c).
Bond distances (A): 2¢N(1) 2.073(2), Z+-N(2) 2.122(2). Torsion angles
(deg): N(1)-Zr—N(2)—C(10)—141.9(3), N(2)-Zr—N(1)—C(6) —131.2(3).

The reaction ofl with 1 equiv of the lithiumansabis(indenyl)
reagents L{SBI'](Et,O) 2a—d (2a, SBI' = (1-indenyl}SiMe,
(SBI); 2b, SBI' = (2-methyl-1-indenyhSiMe, (MSBI); 2¢, SBI
= (2-methyl-4,5-benz-1-indenyBiMe, (MBSBI); 2d, SBI' = (2-
methyl-4-phenyl-1-indenyipiMe,, (MPSBI)) in E£O affords the
correspondingac-(SBI')Zr{ PhN(CH,)sNPH} zirconocene8a—d
in >90% NMR yield (Scheme 1). Thi#d NMR spectra o8a—d
each contain one SiMeaesonance, one 2-H (f@a) or 2-Me
(for 3b—d) resonance, three NGBH,CH,N methylene reso-
nances, and appropriate indenyl resonances consistentCuith
symmetry. Themeso isomers of 3a—d were not detected.
Compounds3c and 3d were isolated in pure form as red solids
in 90% and 87% yield, respectively.

The molecular structure &c was determined by X-ray crys-
tallography (Figure 2y.The Zr—diamide unit in3cis structurally
similar to that in1. The twist conformation of the chelate ring,
the large C(6)N(1)- -N(2)—C(10) torsion angle (142°8 and
the N(1»-Zr—N(2) angle (86.77(9) are very similar to the
corresponding features th The Zr—centroid distances (2.342,
2.291 A) and centroigdZr—centroid angle (123°) are compa-
rable to those irrac-(MBSBI)ZrCl, (2.247 A, 127.9).2b

A reasonable explanation for the high selectivity farc-
metallocene products in Scheme 1 is that the twist conformation
of the Zr propylene-bisamide chelate ring constrains the two
N—Ph groups to lie above and below the-Br—N plane, which
accommodates theac-metallocene structure but sterically dis-
favors themesostructure (and the transition state ayfth*-bis-
(indenyl) intermediate leading theret§)For comparison, the
reaction of 2c with Zr(NMePh}CIy(THF),, the nonchelated
analogue ofL, yields a 1/1 mixture ofac- andmese(MBSBI)-
Zr(NMePh) along with 20% of the dinuclear species (MBSBI)-
{Zr(NMePh)}Cl},.1* X-ray crystallographic analyses show
that the Zr(NMePh) units in Zr(NMePh)CI,(THF), and rac-
(MBSBI)Zr(NMePh) (Figure 3a) are structurally similar to the
Zr{PhN(CH,)sNPhH units in 1 and 3c, with approximateC,
symmetry, large C(PR)N- -N—C(Ph) torsion angles (155.and
152.8, respectively), and placement of the two N-phenyl groups
on opposite sides of the NZr—N plane. However,mese
(MBSBI)Zr(NMePh) can form because the nonchelated-Zr
NMePh ligands can rotate to relieve steric crowding between
the N-phenyl and indenyl groups on the crowded side of the
metallocene, as illustrated in Figure 3b. Similarly, the reaction
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Figure 3. Schematic drawings of the molecular structuresaa- and
mese(MBSBI)Zr(NMePh} (a, b) andac- andmese(MBSBI)Zr(PhCH-
CH;NPh) (c, d) based on X-ray crystallographic analysesaiftl R =
benzo).

of 2c with the 0.5 equiv of theethylene-diamide complex
{Zr(PhNCHCH,NPh)CI(THF} »(u-Cl), yields a 2/1 mixture of
rac- and mese(MBSBI)Zr(PhNCHCH,NPh)1! X-ray crystal-

lographic studies show that the ZrN@EH,N chelate rings in
rac- andmese(MBSBI)Zr(PhNCHCH,NPh) (Figure 3c,d) adopt
envelope conformations in which one-®h group lies in the
N—Zr—N plane, which allows thenesoisomer to form.

We previously reported thaac-(SBI)Zr(NMe,), andrac-(EBI)-
Zr(NMey), (EBI = 1,2-ethylenebis(indenyl)) are quantitatively
converted taac-(SBI)ZrCl, (4a) andrac-(EBI)ZrCl, by reaction
with MesSiCl# Similarly, 3ais cleanly converted tda (100%
NMR) by reaction with MgSiCl in CD,Cl, at 60°C (sealed tube,
Scheme 1). In contrast, no reaction is observed bet8deand
MesSiCl in CD,Cl, (100°C, 30 h, sealed tube). Howevah—d
react cleanly with HCI in BD or toluene at-78 °C to afford
the correspondingac zirconocene dichloridegb—d in high yield
(Scheme 1)rac-(MBSBI)ZrCl;, (4c) was isolated in 70% yield
(vs 1) by initial generation of3c from 1 and 2c¢, filtration to
remove the LiCl coproduct, treatment with HCI at78 °C,
removal of the solvent, and washing with benzene to remove the
PhNH(CH)sNHPh coproduct. Dichloridestb and 4d were
isolated in 76% and 51% yield, respectively (vs Z)Chby in
situ generation of from ZrCl, and Lb[PhN(CH,)sNPh], treatment
with the appropriate L[SBI'](Et;O) reagent, filtration to remove
the LiCl coproduct, treatment with HCI at78 °C, and filtration.

The lower isolated yield foAd is due to its high solubility.

These results show that reaction of the easily accessible
propylene-diamide complex ZPhN(CH,)sNPH Cl,(THF), (1)
with Li[SBI'(Et;O) reagents provides a general, high-yield,
stereoselective route tac-(SBI')Zr{ PhN(CH,)sNPH complexes,
including those with 2-Me substituents. These zirconoeene
diamide complexes, which can be isolated or used in situ, can be
converted to the correspondirrgc-(SBI')ZrCl, complexes by
reaction with MgSiCl (for 3a) or HCI (for 3b—d). The confor-
mational properties of the PhN(GIHNPI~ ligand are the key
to the stereoselectivity in these reactions and this method should
be applicable to a wide variety ahsametallocenes. Work is in
progress to extend this approach to the enantioselective synthesis
of ansametallocenes using chiral diamide ligands.
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